Report verification at igi.org

LG611355789

DIAMOND

1.38 CARAT

VS 1

IDEAL

LABORATORY GROWN

ROUND BRILLIANT 7.17 - 7.20 X 4.38 MM

34.6°

EXCELLENT

EXCELLENT

(例 LG611355789

NONE

Pointed

ADDITIONAL GRADING INFORMATION

Comments: HEARTS & ARROWS

may include post-growth treatment.

December 5, 2023

IGI Report Number

Shape and Cutting Style

Description

Measurements **GRADING RESULTS**

Carat Weight

Color Grade Clarity Grade

Cut Grade

Medium To

Slightly Thick (Faceted)

Polish

Symmetry

Fluorescence

Inscription(s)

Type IIa

ELECTRONIC COPY

LABORATORY GROWN DIAMOND REPORT

December 5, 2023

IGI Report Number LG611355789

Description

LABORATORY GROWN DIAMOND

Shape and Cutting Style

ROUND BRILLIANT 7.17 - 7.20 X 4.38 MM

Measurements

GRADING RESULTS

1.38 CARAT Carat Weight

Color Grade

Clarity Grade VS 1

Cut Grade

IDEAL

D

ADDITIONAL GRADING INFORMATION

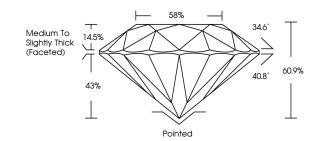
Polish **EXCELLENT**

EXCELLENT Symmetry

NONE Fluorescence

1/5/1 LG611355789 Inscription(s)

Comments: HEARTS & ARROWS


This Laboratory Grown Diamond was created by

Chemical Vapor Deposition (CVD) growth process and

may include post-growth treatment.

Type IIa

PROPORTIONS

www.igi.org

GRADING SCALES

CLARITY

IF	VVS ¹⁻²	VS ¹⁻²	SI 1-2	11-3
Internally	Very Very	Very	Slightly	Included
Flawless	Slightly Included	Slightly Included	Included	

CC	COLOR													
D	Е	F	G	Н	I	J	Faint	Very Light	Light					

Sample Image Used

© IGI 2020, International Gemological Institute

FD - 10 20

This Laboratory Grown Diamond was created by Chemical Vapor Deposition (CVD) growth process and

