LG617483158

PEAR BRILLIANT 13.26 X 7.80 X 4.82 MM

DIAMOND

LABORATORY GROWN

January 17, 2024

Description

Measurements

(Faceted)

IGI Report Number

Shape and Cutting Style

ELECTRONIC COPY

LABORATORY GROWN DIAMOND REPORT

January 17, 2024

IGI Report Number

Description

Shape and Cutting Style

Measurements **GRADING RESULTS**

Carat Weight

Color Grade

Clarity Grade

ADDITIONAL GRADING INFORMATION

Polish

Symmetry

Fluorescence

Inscription(s)

Comments: This Laboratory Grown Diamond was

created by Chemical Vapor Deposition (CVD) growth process and may include post-growth treatment. Type IIa

PROPORTIONS

LG617483158

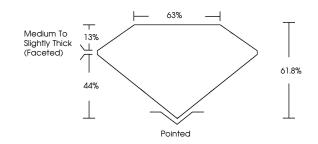
DIAMOND

PEAR BRILLIANT

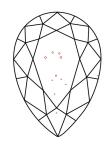
2.95 CARATS

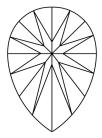
EXCELLENT EXCELLENT

/函 LG617483158


NONE

G


SI 1


LABORATORY GROWN

13.26 X 7.80 X 4.82 MM

CLARITY CHARACTERISTICS

KEY TO SYMBOLS

Red symbols indicate internal characteristics. Green symbols indicate external characteristics.

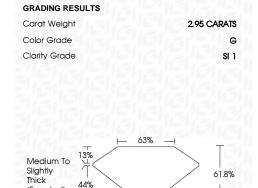
GRADING SCALES

CLARITY

IF	VVS ¹⁻²	VS ¹⁻²	SI 1-2	I ¹⁻³
Internally Flawless	Very Very Slightly Included	Very Slightly Included	Slightly Included	Included

COLOR

D	Е	F	G	Н	I	J	Faint	Very Light	Light


Sample Image Used

© IGI 2020, International Gemological Institute

FD - 10 20

ADDITIONAL GRADING INFORMATION

Polish	EXCELLENT
Symmetry	EXCELLENT
Fluorescence	NONE
Inscription(s)	(G) LG617483158

Pointed

Comments: This Laboratory Grown Diamond was created by Chemical Vapor Deposition (CVD) growth process and may include post-growth treatment.

